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Abstract

We present a theoretical framework for approx imation

techniques for nonlinear system optimal control problems. Two

particular approximation schemes that may be used in the context

of this framework are discussed and typical numerical results for

two examples to which we have applied these schemes are given. We

conclude with a brief survey of related investigations.
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APPROXIMATION TECHNIQUES FOR CONTROL SYSTEMS WITH DELAYS

H. T. Banks and J. A. Burns

1. Introduction

In this report a modification of earlier approx imation

schemes (see [2 ,3,4,7,8]) for linear semigroups is used to develop

a general framework for approximating certain nonlinear optimal

control problems governed by functional differential equations

(FDE). Particular types of schemes are discussed in the context

of this framework, and numerical examples are given that illustrate

some of our findings in using these schemes on “typical” control

problems. We also present a short survey of recent and ongoing

efforts which entail the application of semigroup approximation

ideas to optimal control problems governed by FDE.

Throughout the paper, we shall denote by L~ (a,b) (or

L2(a,b) if V = 1) the customary Lebesgue space of R’~-valued L2

“functions” on (a,b). The symbol 
~ 

will be used for all norms

and it is to be understood that, in general, x~ denotes the X

norm of x whenever x is an element of the space X. The vector

space of n x m matrices will be written as 
~~~~~ 

and

Z = R~ X L~ (—r,O) will be the usual product space. If x: [—r ,+~ ) -“ R’~

and t 0, then the symbol x
~ 

denotes the function xt: (-r,0] -‘~

given by xt(s) = x(t+s). Finally , we shall not, in general ,

distinguish between row and column vectors when the usage makes

clear our intended meaning.
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2. RepresentatiOn of FDE by an abstract equation in Z

Let D(t) E 
~~ ,m 

be such that the function t + ID(tH

is in L2(—r,0), 0 = h0 
< h1 < ... < h,~ = r, and A1 E

i = l,2,...,V. If 41: [-r,0) Rn, then define L to be the

operator

V
L(41) = ~ A .41 (—h .) + D I O ) 4 I ( 0 ) d O .

i 0 1

We shall be concerned with the nonlinear control system

c(t) = L(xt) + f(t,x(t),xt,u(t)), t E [0,t1] (2.1)

x(0) = T) ,  x0 
= 41 ,

where t1 is finite, (~ ,41 ) E Z, and f has the form

f(t,y,*,v) = Aj(t,y, tP ) + C A~(t,y,~P) + B(t)}v.

We assume that the mapping t -~ B(t) E ‘~~ ,m 
is continuous , and

Aj : R1 X Z -
~ R~ , .4~: R1 x z -‘ 

~~ ,m 
satisfy :

(Al) The mappings (t,y, t~’) Aj(t~y,!P)1 I = 1,2, are continuous.

(A2) For each ~ C Z bounded , there exist bounded measurable

functions K1,K2 such that

I .A’~(t~Y~ P) — ..Aj (t~x~$) I < K~ (t) I (y,~’) — (x,$)

for all (x ,$), (y,’P) E~ ~~~, t € R1, i = 1,2.

_______ —U——- - —.- - —--— - ~:-
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(A3) %‘~(t~O~ O) = 0 , i = 1,2, and there exist bounded measurable

functions K1,K2 such that for t E R,

I ..Aj (t ~ y~ t P ) I ~ ~~~~ I (Y~*) I, i = 1,2,

for all (y, t~’) with I (y ,~~) I sufficiently large.

For t > 0, define the operator S(t): Z -
~ Z by S( t )  (n,41) =

(x(t) ,xt) where x is the solution to the homogeneous linear

equation x(t) = L(xt), satisfying x(O) = 
~~, 

x0 
= 41. It is known

that {S( t) }t>o is a linear C0 semigroup on Z, and if si

denotes the infinitesimal generator of this semigroup , then iI is

defined on ~ (d) = C ( r t , 4 1 ) I  41 is absolutely continuous,

• EL~ (—r,O) and Ti = 41(0)) by d(n ,41 ) = (L(41),41). Let Il
l : Z Rn

and 
~2 

Z -
~ L~ (—r,0) be the coordinate projections, n

1
(~~,41 ) =

and Tr
2

(~~ ,$)  = P .  Define F: R1 X X Rm ~~ z by

F(t,z,v) = (f(t ,IT
1z,

TT
2z,v),0).

Consider the abstract integral equa tion in Z

z ( t )  = S ( t ) z 0 + I S(t—c)F(a,z(c),u(~ ))da , (2.2)

~0

where 0 < t < t1 
and z

0 
= (n,41) E Z. If f satisfies (Al)—(A3)

and u E L~ (O,t1), then it follows from the more general results

established in [21 that equation (2.2) has a unique solution on

_ 
- —~~~- - --- .- -- -
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[0,t1]. The following theorem is an extension of the result for

linear systems (see [3]) and provides a slight improvement on the

linear and nonlinear cases previously treated (see [21 - Theorem 2.1).

Theorem I. Suppose that f satisfies (Al)—(A3) and u E L~
’(0,t1).

If z0 = (~ ,41 ) is any element in Z, then

z(t;z0,u) = (x(t;z0,u), xt(zo,u)), 
(2.3)

where t -* x (t ; z0,u)  is the solution to (2.1) and t -
~ z ( t ; z 0, u)

is the solution to (2.2).

Observe that Theorem I differs from Theorem 2.1 in [2] in

that we do not require that = (n,41) belong to 9JLcj) . In

particular , the equivalence (2.3) establishes unequivocally an

abstract formulation for the control system (2.1) as the integral

equation (2.2).

The proof of Theorem I follows the proof of Theorem 2.1 of

[21 once one has established the continuity of the mappings

(z0,u) -~ (x(t;z0,u), x~~
(z0,u)) and (z0,u) 

-
~ z(t;z0,u) from

Z ~ L~ (O,t1) into Z. Verification of these continuity require-

ments entail only slight modifications of the arguments behind

Lemma 2.2 and Lemma 2.3 of 12].

Remark 2.1: Theorem I is the foundation for the general approximation

technique to be detailed below. The idea is to approximate the

linear semigroup {S(t)) which will lead, via the equivalence (2.3),
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to approximations of the original nonlinear FDE system ( 2 . 1) .

Before pursuing this matter we note that Theorem I is also valid

for the somewhat more general nonlinear systems considered in [21.

3. Approximating control systems

We now turn to development of our abstract framework for

approximating optimal control problems governed by the nonlinear

FDE system (2 .1) .  This framework extends the linear theory given

in [3] and is a slight modification of the ideas developed in [ 2 ] .

Let z ( t ; z 0, u) denote the solution to the abstract integral

equation

z ( t )  = S(t)z + I S ( t — a ) F ( a , z ( a ) ,u ( o ) ) d o , (3.1)0 J O

on the interval [O ,t1
]. Our goal is to construct approximations to

z(t;z0,u) and we shall do this by first approximating Z and

{s(t)}.
N N N N

We say that the sequence of quadruples Cz ,P ,M ,S ( t ) ) ,

N = 1,2,..., is an approximating sequence if the following hypotheses

are satisfied :

(Ill) is a finite dimensional subspace of Z for each N.

(H2) PN: z -. are (continuous) projections onto such

that limIPN (fl,$) — ( n ,41 ) I  = 0 for all (~ ,41 ) E Z.

(H3 )  For each N, M~
’1: zN ~ is a linear operator , and there

is a sequence 
~~~ 

of constants such that u r n  
~N 

=

N-’~

- -~~~~~~~~
---- -_
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and I MN(~ ,O) — (F~,O) I ~ 
t N ’~~’ for all ~ ER

A
.

(H4) The semigroups CSN (t)} satisfy IS
N ( t )  I < Kelt (where K

and ‘y are constants independent of N) and if (n,41) E Z,

then limISN (t) (~ , 41 )  - S(t) ( 1 , 4 1 ) 1  = 0 and the convergence

is uniform in t on compact subsets of R1.

Remark 3.1: The definition of an approximating sequence given above

is related to but not the same as one employed by Trotter in [15].

The operators MN were first introduced in [8] and they play an

important role in certain approximation schemes (see the piecewise

linear scheme in the next section and the discussions in [7]).

If {Z N ,PN,MN,SN (t)} is an approximating sequence, then

we define for each N the approximating integral equation

zN (t) = sN t p N
~0 + 

f

t
SN (t_o)MNPNF(cY ,z

N (a),u(cT))do , (3.2)

where 0 < t < t1 and = (~ ,41 ) E Z. As in [2], it can be shown

that (3.2) has a unique solution for each z0 E Z and u E L~ (O,t1),

provided f satisfies (Al)-(A3). Moreover , since zN is finite

dimensional it follows that the integral equation (3.2) is equivalent

to the ordinary di fferential system

= ANzN (t) + MNPNF(t,zN (t),u(t))
(3.3)

ZN (o) = pN~

where AN is the inf initesimal genera tor for {SN (t)}, i.e.,

- , .
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sN (t )  = e~~ t .

A few observations are now in order. First, in some schemes

where elements of the form (~~,O) are in (this is the case for

the schemes to be discussed here - but is not the case in the event

one considers the spline approximations in [6]) we point out that

F(t,z,v) = ( f ( t ,ir1z ,n2z ,v ) , O) is in z N . Hence , in ( 3 . 2 )  and ( 3 . 3 )

it is not necessary to project F ( t , z ,v) onto Z~ with

Secondly, the idea of approximating FDE systems by finite dimensional

ordinary differential equations is not new and for a rather complete

summary of previous e f for t s  involving such techniques one may see

[4]

Returning to the problems under discussion here , we observe

that the following two theorems may be proven using the basic ideas

in [2] and [7].

Theorem II . Let {z N , PN ,MN ,SN ( t ) }  be an approximating sequence

and suppose 
~~ 

c L~~(0 ,t1) is bounded . If z ( t ; z 0, u) and

z~~~t ; z 0, u are defined by (3.1) and ( 3 . 2 ) ,  respectively, then

zN ( t ;2
0

,u) z ( t ; z
0

, u) as N ~~ , un i formly  in t on [O , t 1]

and u E .
~~~
‘
.

Theorem III. Let {ZN,PN,MN,SN (t)} be an approximating sequence.

If {uN ) is a sequence in L~~( O ,t1) and C U N ) converges weakly

to u, then z N(t;z
0
,uN) -

~ z(t;z0,u) as N -
~ 

m~~ un i formly  in t

on [0,t1].

- _ __-_. S - - - — - - - - - — .
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I

Remark 3.2: Theorem III is the only result in this paper that

does not extend to the more general nonlinear systems treated in

[2]. The critical requirement in establishing this convergence is

the weak continuity O
C the mapping u -* z(t;z

01 u) from L~ (O ,t1
)

into Z. However, for systems with nonlinearities satisfying (A1)-(A3 )

weak continuity can be argued (see [21 for more comments on this point).

If z(t;z0,u) and ZN (t;z 0,u) are given by (3.1) and (3.2),

respectively , then we let z (t;z01 u) = (x (t),y (t)) (where

x~
’
~(t) E R~ , yN (t) E L~ (-r ,O)) and observe that since

z(t;z01 u) = (x(t),xt) we have convergence of xN (t) to x(t) in

R~ and yN (t) to x~ in L~ (—n ,0) (uniformly in t on [0,t1]

and in u E ~4 ) ~ Consider the optimal control problem :

(9) Minimize the cost

t l
J(u) = ~ x (t1)Gx(t1) + {x(s)Qx(s + u(s)Ru(s)}ds

subject to (2.1) and u E ‘*, where ‘~e is a closed convex

subset of L~ (O,t1).

If {ZN,PN,MN ,SN (t)} is an approximating sequence , then

we formulate the corresponding approximating control problems:

(~~~ )N Minimize the cost

JN () = ~ x~~t1 Gx~~t1 + ~ J

1
{x N (s)QX N (s) + u ( s ) R u ( s ) ) d s

subject to (3.2) and u E ‘~~~~.
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Suppose now that for each N , is an optimal control  for

the approximating problem (ç 19)N (note that need not be unique

in the general case of problems with a nonlinear system) . Employing

standard arguments ( see Theorem 4.1 of [ 3 ] )  one can show that

is a bounded sequence in L~~(0,t1) and possesses a subsequence

which converges weakly to a control that yields a solution to problem

(.9) . Indeed , one finds

Theorem IV. Suppose that is an optimal control for problem

• • *N = 1,2 Then there is an optimal control u for
N N

problem (.9) and a subsequence {~ 
k} such that {~ 

k} converges
N N

to u~ and x k (t
_ k ) -~ x(t;z 0,u*) as Nk 

-

~ 
~~~~. Moreover ,

if u~ is the unique solution for (.9) then the original sequence

{~~ } converges to u~ and xN (t;z 01 i~~) -~ x ( t ; z 0, u* ) ,  uniformly

in t.

4. Two approximation schemes

In this section , we outline two particular schemes that are

included in the general framework presented in Section 3 and discuss

some numerical  examples based on these schemes. In order to fac i l i t a te

exposition in illustrating these ideas , we consider the simplest case

where the linear part of equation (2.1) has the form L(41) = A041- (0) +

( — r )

Let ft~ }, j = 0,1,2,... ,N be the partition of [-r,0]

defined by t~ = and let be the midpoint of [t~ ,t~~11 = I~ .

We let denote the characteristic function for [t~ ,t~~ 1), while
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(t) = (t—€ ~ )x~~(t). If (n,41) E Z, then for j = 1,2,... ,N we

define

= 4 1 ( s ) d s ,
3

= _ _ _

and we define to be n .

The approximating sequence for what we shall call the averaging

approximations is defined by quadruples

AVE = {zN,PN,MN ,SN (t)} where :

= { ( n , 4 1 ) I  n E R~ , 41 = ~ ~~~~ v~ ER~ J;
j=1 3 ~

N
pN (1 41) (~ ~ 41~x

N ) ;
j=l ~

N • NM = ‘N ’ the identity on Z

sN (t )  e
A t

, where AN is the operator

AN ( n , 4 1 )  = (A0~ + A141~~,~~ ~ 
-

The operator AN may be loosely descr ibed as “the approximation

of the inf in i tes ima l generator d for C S ( t ) }  on the subspace

by using forward differences to approximate 41 (see [3], [4]). The 

— - - —
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proof that AVE is an approximating sequence may be found in [4].

The approximating sequence for what we have termed piecewise

linear approximations is given by the quadruples

PWL = C ~
N iN~~

N (t)} where :

= { ( n , 4 1 ) J  ~ E Rn , 41 + ~~~~~~~ v~~,wN E R ” };
j=l ~ ~ ~ ~

N
= (n, ~ +

j =l  ~ ~

N N  N NM (T i , L v .x . + w .Y .) = (n,g) , where

n + w~ }~~ + ~~~~~ + w~~~ );

S (t)=e

Here AN is the operator defined (again this involves a forward

difference approximation for 41 ) by ~N (1,41) = ~~~ where

= A0~ + A1(41~ 
- 

~~~~~~~ ~~) and ~‘(t) = + is determined by

= ~~ (Ti— 41~) + Ti + 
~~~~~~ (41N — 

r

= ~~ {A 0
r~ + A1(41~ 

— 
~~~~~~ 41~ ) —

= 
~~~ ~~j—l 

- = 
~~~ ~~~—1 

— j = 2,....,N.

The proof that PWL is an approximating sequence is given in [7].

S 

—

* - - - 

~~~~ 

— — -—-- - - - 

- 

— 
h; 

— 
- 

—.-—  - -___I_____. 
U l~~ 

- -.
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We present next a summary of two examples that are typical

of the behavior we have observed in using the above schemes in

numerical computations. For results of tests with numerous other

examples (both linear and nonlinear) one should consult [2], [4],

[5], [7], [8].

Example 1: We consider the problem of minimizing

J(u) = ~~
- x(2)2 + 

~~ J0
u (t) 2dt

over u E ‘
~~~~ 

= L2(O,2) subject to

k ( t )  = x(t—l) + u ( t ) , 0 < t < 2 ,

x ( O ) = 41 (8), — l < 0 < 0 ,

where

1 2 0
41 (0) = 1— 2 0 + 1  —~~~~< 0 < C

One can use necessary conditions for delay system con trol problems
to find an analytical solution to this problem (for details, see

[7]). The optimal control is given by
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0 r ~~ — 26 0 < t < 1,
*u (t )  =

— 6 l < t < 2 ,

where 6 1.05102, and the corresponding value of the payoff is

J(u*) 2.55531. In Figure 1, we plot typical approximate controls

(for N = 16) for the AVE and PWL schemes described above, along

with a plot of u*.

Example 2: The problem is to minimize

J( u ) = ~~ x(2)~ + 
~ J {x (t)2 + u(t)2}dt

over u E = L2(O,2) subject to the nonlinear system

k(t) = x(t)sin x(t) + x(t—l) + u (t), 0 < t < 2,

x ( O )  = 10, —l < 0 < 0.

While we are not able to solve this problem analytically , we can

use directly the necessary conditions for delay systems to get a

numerical approximation for u” (see [ 2 ] ) .  This can , in turn , be

used to check the convergence of schemes such as those under

discussion here. Figure 2 contains plots of (using the

AVE scheme) and the independently obtained numerical approximation

for u*.

5. Final remarks.

We conclude with brief comments on recent efforts directly

related to those reported here. First, complete and detailed
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discussions (along with error estimates, numerical results for a

number of other examples , and remarks on the role of the operators

MN ) for the averaging ( AyE) and piecewise linear (P WL) schemes

detailed above may be found in [4], [7], and [8]. Other recent

contributions involving the use of a semigroup framework for approxi-

mation methods include the work of Reber in [111 and Banks and

Kappel in [6]. Reber, employing factor space methods (see Chapter 5

of [10]) has carried out theoretical and numerical investigations

for schemes that entail simultaneous discretizations (in both the

time and state variables) .  This underlying idea , which leads

directly to f in i te  dimensional difference equation control problems

(as opposed to the ordinary differential equation approximating

problems such as those discussed above), was used in [11] to develop

a theoretical framework for problems with general nonautonomous liRear

FDE control systems. In [6] the authors show that the framework

developed in [2], [3], and [4] is an appropriate setting for the

use of splines in approximating linear and nonlinear FDE.

Several other investigators have used semigroups to treat

nonlinear FDE in the spirit of the framework given in [3]. Reddien

and Webb [12) and Sasai and Ishigaki [13], assuming a global

Lipsch itz condition on the nonlinearities of the sys tem , use ideas

from nonlinear semigroup theory (as developed in recent years in the

investigation of nonlinear evolution equations in Hil bert spaces)

to obtain convergence results for approximation schemes of the

averaging type discussed above. Kappel and Schappacher [9] develop

a “ local” nonlinear semigroup theory which requires only a local

Lipschitz condition on their autonomous nonlinear FDE and obtain

S * — - - - r -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -
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approximation techniques which are also of the averaging type. To

date, only Sasai has considered any of these nonlinear semigroup

results in the context of optimal control problems and the

theoretical results given in [14] appear to be applicable in

practice only to a much more restricted class of control problems

(problems with admissible sets of smooth controls that are essentially

conditionally compact) than those discussed above or in [2].
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